
Strategies for Fault-Tolerant, Space-Based Computing:
Lessons Learned from the ARGOS Testbed12

M. N. Lovellette, K. S. Wood
Naval Research Laboratory
4555 Overlook Ave SW
Washington, DC  20375

202-404-7460
lovellette@xip.nrl.navy.mil

D. L.  Wood3

Praxis Inc.

J. H. Beall3

St. John’s College Annapolis

P. P. Shirvani, N. Oh, E. J. McCluskey
Center for Reliable Computing, Stanford University

                                                
1 U.S. Government work not protected by U.S. copyright.
2 This work was funded by the Office of Naval Research and by  the
Ballistic Missile Defense Organization.
3 Under contract to NRL Code 7620.

Abstract  The Advanced Space Computing and Autonomy
Testbed on the ARGOS Satellite provides the first direct,
on orbit comparison of a modern radiation hardened 32 bit
processor with a similar COTS processor. This
investigation was motivated by the need for higher
capability computers for space flight use than could be met
with available radiation hardened components. The use of
COTS devices for space applications has been suggested to
accelerate the development cycle and produce cost effective
systems. Software-implemented corrections of radiation-
induced SEUs (SIHFT) can provide low-cost solutions for
enhancing the reliability of these systems. We have flown
two 32-bit single board computers (SBCs) onboard the
ARGOS spacecraft. One is full COTS, while the other is
RAD-hard. The COTS board has an order of magnitude
higher computational throughput than the RAD-hard board,
offseting the performance overhead of the SIHFT techniques
used on the COTS board while consuming less power.

TABLE OF CONTENTS

1. INTRODUCTION
2. THE ARGOS TESTBED
3. THE ARGOS MISSION
4. SOFTWARE EXPERIMENTS
5. RAD HARD BOARD RESULTS
6. COTS BOARD RESULTS
7. CONCLUSIONS
8.  ACKNOWLEDGEMENTS
9. REFERENCES

1. INTRODUCTION

The Advanced Space Computing and Autonomy Testbed
(ASCAT) on the Advanced Research and Global

Observation Satellite (ARGOS) provides the first direct on
orbit comparison of a modern radiation hardened (RAD-
hard) 32 bit processor with a similar Commercial Off The
Shelf (COTS) processor. This investigation was motivated
by the continuing need for higher capability computers for
spaceflight use than can be met with currently available
radiation hardened components.

Radiation hardening has traditionally been required for
components to accommodate the space environment.
Component radiation susceptibility encompasses two
distinct effects, total dose susceptibility (TDS) and Single
Event Upset (SEU) susceptibility. TDS is permanent
damage caused by interaction of charged particles with the
devices, leading to higher leakage currents that eventually
cause failure. Typically the annual radiation dose for a
system in low earth orbit (LEO) is 1-5 kRADs/year. Many
of the smaller LEO missions have total dose requirements
in the 20 -50 kRAD range. SEUs are transient faults caused
by the passage of a single charged particle and typically
manifest themselves as a bit-flip -- an undesired change of
state in the content of a storage element. Radiation induced
SEUs are not restricted to the space environment, but also
have been observed at ground level [1].

TDS may be enhanced by use of intrinsically radiation hard
processes such as bulk CMOS or silicon on insulator (SOI),
or by shielding more susceptible devices with a high Z
material such as tungsten. Radiation hardening for SEU
tolerance can involve substantial changes to the device
topology to mitigate charged particle effects. Because of the
time required to modify commercial designs, these
components lag behind today’s commercial components in
performance. It is not uncommon for the radiation hardened
version of a part to be released five years after the initial



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2007 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2007 to 00-00-2007  

4. TITLE AND SUBTITLE 
Strategies for Fault-Tolerant, Space-Based computing: Lessons Learned
from the ARGOS Testbed 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Research Laboratory,4555 Overlook Avenue, 
SW,Washington,DC,20375 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

11 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



commercial part, producing obsolescence on arrival. The
need for state-of-the-art high performance computing
systems for space flight applications, coupled with mission
cost containment, provides a strong motivation for
investigating alternatives to traditional radiation hardened
devices.

Use of COTS devices has been suggested as a way to
accelerate the development cycle and produce cheaper, faster
systems [2]. It is possible to screen COTS components for
appropriate levels of TDS, and shield them as required, but
there is no similar fix for SEUs. Software-Implemented
Hardware Fault Tolerance (SIHFT) techniques can provide
low-cost solutions for enhancing the reliability of these
systems without modifying the hardware [3][4][5].

There are several metrics that may be used to quantify
system performance. Two selected for this study are the
number of unrecoverable errors and the total system
availability. These are partly related in that an unrecoverable
error will lead to a loss of system availability, at least for
the code module that sustains the error. The latter is
probably the best choice of metric for a processor used as a
payload controller or a data processor. It should be possible
to implement spare processing modules that could
immediately take over for one affected by an SEU. Very
high reliability tasks, such as spacecraft control functions,
typically have not been drivers for increased processor
throughput.

The Unconventional Stellar Aspect (USA) experiment on
the ARGOS satellite was typical of space systems whose
data gathering capabilities greatly exceed their downlink
bandwidths [6]. When the USA mission was manifested,
space and power were reserved for the addition of one or two
high performance computers to process data in flight. The
concept was to provide an early flight test opportunity for
several of the then active processor development programs.
A survey was conducted to identify candidate processors in
conjunction with the Integrated Science and Technology
(IS&T) Office of the Ballistic Missile Defense Organization
(BMDO). Four potential processors were identified, the
Harris RH3000, TRW and Honeywell RH32s and the IBM
RAD 6000. Of these candidates, the RH3000 program was
able to work within the schedule constraints of the USA
program and deliver a processor card. This left an opening
in the USA electronics for an additional board, and at the
suggestion of one of the authors, E. J. McCluskey, the idea
testing of an approximately equivalent COTS processor to
the RH-3000 was implemented, but this decision came late
in the program and had to be implemented swiftly.

The Naval Postgraduate School developed an SBC based on
the IDT-3081 processor. This processor was selected because
of previous experience with it on the Micro Processor and
Photonics Testbed [8] and Clementine [9] programs. This
board contained completely COTS technology with the
exception of its interface with the rest of the instrument, but
provided as much as 25 times the computing power of the
RH-3000 for less power. The board was fabricated and
delivered to NRL for operating system development and
interface testing with the USA brass-board (nonflight

electronics) at a time when the rest of the USA experiment
had already shipped to the space vehicle contractor. The
IDT-3081 board underwent an abbreviated board level
environmental test, thermal cycling and vibration, at NRL
and was integrated with the USA instrument at Boeing. It
then completed the nominal integrated test flow with the
instrument including system level acoustic and thermal
vacuum testing. The compressed design and fabrication
schedule precluded any effort to include the capability to
recover autonomously the state of the system after a major
error. The response of the IDT-3081 board was thus limited
to preparing for system recovery.

2. THE ARGOS TESTBED

ARGOS, USA and ASCAT

The ARGOS satellite is a multi-instrument platform built
and operated by the US Air Force for the DoD Tri-Service
Space Test Program (STP). STP provides a path to flight
for payloads with DoD relevance produced by government
laboratories. The ARGOS space vehicle weighed
approximately 5400 pounds at launch and carries 9
experiments ranging from an arc-jet propulsion
demonstration to space and upper atmosphere remote
sensing. ARGOS was launched from Vandenberg Air Force
Base into a 850 km 98.7° orbit on 23 February 1999. This
polar orbit, slightly higher than usual for LEO satellites and
crossing both the radiation belts and the South Atlantic
Anomaly (SAA). presented radiation tolerance challenges for
electronic parts. The total dose expected behind 2.5 mm of
Aluminum shielding for the three year duration of the
mission was 5 - 20 kRads [7].

The USA experiment is an X-ray timing instrument that
provides energy and time of arrival to 1 µs precision for
each incident photon. The polar ARGOS orbit is not ideal
for an X-ray detector such as USA and the operational time
period of the X-ray sensors was generally limited to the low
latitudes between +45° and -45° and sometimes over the
south pole. The X-ray sensors could also not be operated in
the SAA, but by the nature of their operation, provided
excellent diagnostic data in the low background portions of
the orbit.

The USA instrument control processor is a Harris radiation
hardened version of the Intel 8086 running at 4 MHz. This
part is a good example of the difficulty of obtaining space-
flight worthy parts. In 1992, when the USA system
architecture was created, the current state of the art for the
80X86 processor family was the 80486 running at 33 MHz.
The other rad-hard processor was the GVSC-1750, which
provided somewhat more capability than the 8086, but was
much more expensive and had a much less complete
software development environment. To accommodate the
unique background environment the USA instrument would
experience and to allow data packing modes to be tailored to
the source features of interest, there was the strong desire to
perform the USA data processing in a reprogrammable
processor rather than in hardware. However, the X-ray data
processing requirements for USA were beyond the capability
of the Harris 8086. The actual sensor data formatting and



telemetry frame building was performed by a RAD-hard
Analog Devices ADSP-2100 digital signal processor.

RH-3000 Rad-hard board

The RH-3000 SBC was provided to USA by the Mission
Development Branch of the Naval Research Laboratory
Naval Center for Space Technology. The principal
components of the RH-3000 processor are the RH-3000
CPU, RHFPA and RHMD which together function as the
RH-3010 floating point coprocessor for the RH-3000 CPU,
and two RHSC cache control devices. The RH-3000 CPU is
clocked at 10 MHz. The board has 2MB of Silicon on
Insulator (SOI) SRAM memory with hardware error
detection and correction which is capable of correcting
single bit errors and detecting double bit errors through a 4
bit symbol error correcting code.  The address and data
buses both have parity bits. The RH3000 is configured as a
"master/shadow" system. Each processor component is
duplicated and each calculation is therefore performed twice.
The results are compared after each operation. A mismatch
between the master and shadow processors causes an
exception resulting in a system halt and reset. Startup code
and operating system are stored in 128Kbytes of EEPROM.
The interface to the rest of the USA electronics is through a
16Kbyte dual port memory device. The board also contains
32 Kbytes of SRAM for both the data and instruction
caches. Unfortunately a hardware bug resulted in read-
modify-write instructions periodically failing, requiring the
board to be operated in uncached mode with a substantial
performance penalty.

COTS IDT-3081 Board

The processor selected for the COTS board was the IDT-
3081. This device is a single chip implementation of the
MIPS RISC architecture which provides an instruction set
compatible with the R30XX family of RISC CPUs. The
IDT-3081 provides 16 Kbytes on chip instruction cache and
4 Kbytes on chip data cache. Both the instruction and data
caches are equipped with parity, but initial versions of the
fault-tolerance experiments did not make use of it. The bulk
of the IDT-3081 operation time has been accumulated with
the caches enabled. The COTS board also contains 2
Mbytes of memory, in the form of four Cypress
Semiconductor CYM1465LPD-70C modules, 512K x 8
bits. This memory has no hardware error detection or
correction capabilities. Nonvolatile storage is provided by
2 Mbytes of EEPROM configured as 8 segments of 256
Kbytes each. The COTS board interfaces with the USA
instrument controller through a dual port RAM device in an
identical fashion to the RH-3000 board.

3.  THE ARGOS MISSION

The ARGOS satellite was launched 23 February 1999. The
USA instrument was powered up on 30 April 1999. The
ground rule for the computational portion of the experiment
was that it would not interfere with the other ARGOS
payloads or with the USA X-ray experiment. The computer
power up and first software loads took place approximately
20 May 1999, after all other experiments on the spacecraft
had been initialized. The first applications run were simple

memory tests. These were used as much to debug the
command and telemetry systems as to actually gather data
from the instrument.

Even though nothing changes physically in the hardware,
flight operations differ enormously from operations in
ground tests. The required sequences take longer because of
the additional communication links and any happenstance
can produce further delays. All of this adds up to a
qualitative difference in the character of operations. The
software upload requirements of the ASCAT testbed placed
the experiment toward the extreme end of the uplink
requirements spectrum for STP missions. The uplink rate
was 2 Kbits/second and a typical upload for the IDT-3081
was 52 Kbytes compressed (100 Kbytes uncompressed) at
the beginning of the mission. Time was needed to debug
the logistics of moving a large block of code reliably up to
the vehicle. ARGOS typically had five or six contacts per
day. Each contact was about ten minutes in duration. Code
uploads could begin only after other vehicle commands had
been sent and data transmission to the ground had been
started. With the overhead imposed by the communication
system and scheduling around other vehicle tasks, it often
took a day to perform a complete code upload. The
magnitude of the task was increased because early in the
mission additional code loads were not committed to the
onboard nonvolatile storage. This was done to prevent a
fault leaving the system in a non-recoverable state. As the
level of experience with the system increased, the EEPROM
memory was used to store frequently executed code modules
reducing the upload requirements to approximately 25
Kbytes, compressed, and a wider range of software
experiments were then conducted, often with several running
concurrently. These fall into two broad classes, memory
tests and error detection/correction experiments.

Figure 1. Software Test Uplink Flow

The procedure required to perform a software test in flight
was quite lengthy; Figure 1. It was possible at all only
because the processors were not in a flight critical position.
Many of the fault-tolerant techniques were developed before
launch using simulations and artificial fault injections. Once
a fault-tolerant method was identified for use, it was ported
to the ARGOS environment.  This module was first loaded
and run on the USA electronics test bench setup at NRL. 
The test setup includes fully functional brass-board copies



of the USA instrument control processor, the IDT-3081, and
the RH-3000, as well as an ARGOS space vehicle
simulator. At this point, the software modules were
expected to run smoothly for at least a day without
indicating any errors.  Once a software module had passed
the bench test, the module object file was converted to the
mission operations upload format (CUTF) and dispatched to
the mission operations center.  The time from the beginning
of bench testing to the time that the software module began
running in flight was about two weeks. A software
experiment on ARGOS wrote its results into the space
vehicle solid-state recorder (SSR) once per orbit.  The SSR
was then dumped to a ground station between one and six
times a day.  Depending on the location of the downlink
ground station, the SSR dumps were made available from
the mission operations center within one to fourteen days.
The downlink data was then passed through a telemetry
filter application to extract the ASCAT results in a useable
format. 

Thus, the nominal software experiment took about a month
from beginning of development to execution. The time to
gather meaningful results, however, was longer since many
of the ASCAT software modules require long run times to
produce statistically significant numbers of errors.  The test
software modules were also not exempt from bugs. Most
software modules have had several major revisions. The
results presented in this paper are limited primarily to the
most recent versions of the software.

4.  SOFTWARE  EXPERIMENTS

Fault tolerance software experiments divide into two broad
categories, systems diagnostics to define the primary fault
categories and the subsequent fault-tolerant tasks designed
to mitigate those faults. The primary systems diagnostics
were memory test routines that continually checked for
SEUs in the system, with characterization upon detection.

Operating Systems and Infrastructure

We selected the VxWorks operating system (OS) from Wind
River Systems to provide low-level system services for the
ASCAT processor boards.  The RH-3000 port of VxWorks
was provided by the Naval Center for Space Technology. 
This port was already in existence in the early phases of the
ASCAT experiment.  The VxWorks port for the RH-3000,
therefore, is somewhat older than the reset of the ASCAT
software and is based on VxWorks version 5.0.1.  The OS
binary image is installed in the RH-3000 EEPROM in a
compressed format along with a small bootstrap module.
The OS port for the RH-3000 has some custom features to
handle the special fault-tolerant hardware features included
in the processor chip set.  The IDT-3081 VxWorks port was
provided by NRL at a later date.  The IDT-3081 OS port is
based on VxWorks version 5.3.1.  As with the RH-3000,
the IDT-3081 OS binary image is stored in EEPROM along
with a simple bootstrap module.  Because the IDT-3081
board contains a more generous amount of EEPROM, the
OS image is not compressed. At power on or reset, the
bootstrap module for both boards initializes the hardware,
inflates or copies the OS image into a known location in

SRAM, and jumps to the OS entry point.

Both the RH-3000 and IDT-3081 OS ports also contain
software interfaces the dual-port memory.  These low-level
drivers allow the USA instrument control processor to send
the boards commands, file uploads, and time and attitude
information.  The dual-port memory drivers also allow
applications on either board to send telemetry information
to the USA instrument control processor.  In addition, the
later work on the IDT-3081 system software allowed a
compression feature to be built in to the file upload code. 
This feature is not available for the RH-3000. The OS
memory images are quite large in comparison to the 2
Mbytes SRAM available on the boards.  The OS code
segment occupies about 340 Kbytes of memory, and the OS
static data segment occupies about 135 Kbytes of memory. 
In addition, the OS internally allocates and frees memory
dynamically at run time when system objects are created or
destroyed.  When the ASCAT experiment began, the OS
images and bootstrap modules were the only on-board
software; all other applications needed to be uploaded from
a ground station.

RH3000 System Diagnostics

Because the  RH3000 OS was ported to the board much
earlier than the IDT-3081 OS, the RH-3000 system file
loader did not contain code to allow for compressed upload
modules.  The resulting reduced upload bandwidth severely
limited the size of the upload modules which could be
reliably uplinked to the RH-3000 board.  Since the IDT-
3081 provides a much better testbed for the fault-tolerant
software experiments, it was decided early on in the
experiment to allocate most of the available upload
bandwidth to the IDT-3081 uplinks.  The RH-3000,
however, was regularly loaded with two test applications.

The first RH3000 application is a simple memory test
which uses a fixed pattern of alternating 1’s and 0’s.  The
fixed pattern is written a large (512 Kbytes) memory buffer
at startup.  The memory test then scans the test buffer,
looking for a change in the known pattern.  The second
application is a test of the floating point unit.  This
application has included a large, static buffer of values.  The
application continuously calculates the trigonometric sin
value of each of the input values.  The resulting table is
then checked against the known correct values.

IDT-3081 System Diagnostics

Memory tests are perhaps the most important of the
ASCAT applications. The first application uploaded and
executed on either board was the simple memory test.  It
was chosen as the first application for a number of reasons.
First, the memory test is relatively easy to write and test.
The small code size results in a small upload size. The
SRAM on the IDT-3081 board, by virtue of its gate count,
is the most vulnerable component to radiation SEUs. Thus,
a small memory test estimates the error conditions without
itself being subject to significant internal errors.  If we
assume that all SRAM will exhibit similar error
probabilities, it should then be possible to gauge the error
probabilities for different applications by examining the



amount of SRAM an application uses. If the error rates
observed during the application’s execution period are in the
same range as the estimated error rates, then it follows that
the errors encountered by the application are most likely the
result of SRAM SEUs.  If the observed error rates differ
significantly from the estimated then components other than
SRAM may be contributing to the application’s overall
SEU rate.

Two different memory tests were run over the course of the
experiment on the IDT-3081 board.  The first memory test
uses a fixed pattern of alternating 1’s and 0’s.  The fixed
pattern is written to two large (256 Kbytes) memory buffers
at startup.  The memory test then scans the test buffers,
looking for a change in the known pattern.  One buffer is
accessed through the data cache and the other buffer is
accessed by bypassing the data cache to determine if the
cache memory shows a noticeable effect on the memory
error rate.  The second memory test uses a single, uncached
test buffer, but periodically re-initializes the buffer with a
different test pattern.  For example, the memory test uses all
1’s, all 0’s, and different cases of alternating 1’s and 0’s. 
The variable test patterns are designed to determine what
effect the patterns have on the measured memory error rate. 
Differences in the error rates for different patterns may lead
to conclusions about how the underlying memory chip
hardware design affects the reliability performance.

IDT-3081 Operating Systems Augmentations

When the measured SRAM SEU rate of ~6 x 10-7 SEU/bit-
day is applied to the OS static memory allocation figures,
the following error rates are expected in OS SRAM
segments:

OS code segment estimated SEU rate  = 1.9 SEU / day
OS data segment estimated SEU rate = 0.7 SEU / day

These expected rates indicate that the OS SRAM SEUs are
probable enough to warrant attention.  All test applications
rely on the underlying OS services to manage memory,
processor time, and I/O.  Early attempts at running test
applications showed the IDT-3081 system as a whole was
not stable.  In particular, uploading new versions of test
applications was not very successful.  It became obvious,
from memory test calculations and flight experience that OS
memory segments needed protection. Otherwise, actual test
applications would never run long enough and reliably
enough to gather useful data. 

This issue was addressed early in the experiment[10].  Any
solution must be transparent to the on-board OS image. 
Replacing the OS image stored in EEPROM is infeasible
for two reasons.  First, the binary image is too large to
upload using ARGOS ground stations.  Second, even if a
replacement were possible, the lack of OS source code
makes the implementation of more sophisticated fault
tolerance features nearly impossible.  We eventually adapted
the general technique of Error Correcting Codes (ECC) to
the IDT-3081 environment.  ECC codes are well-known
methods for autonomously correcting errant bit patterns for

mass storage and communication devices.  Each ECC
implementation provides a certain level of detection and
correction capability.  Usually, those methods that provide
better detection and correction ability also require greater
resources such as more memory storage or longer
encode/decode times.  Normally, the ECC codes are created
by a hardware encoder, which generates the correction bits
based on the bits of the word is being committed to storage.
The correction bits are stored along with the actual data.
When the data word needs to be retrieved from storage, a
hardware decoder checks the data word bits against the
correction bits.  Depending on the sophistication of the
ECC code, the decoder may be able to detect one or more
bit errors in the data word encountered.  Again depending
on the sophistication of the ECC code, the decoder may
either autonomously correct the data error, or it may signal
that it encountered an uncorrectable error.  Usually, the
decoder detects errors when data is read out of storage. 
However, this policy can lead to several bit errors
accumulating in stale locations that are not read frequently. 
 The buildup of bit errors may surpass the detection and
correction of capabilities of the ECC code. Periodic
scrubbing can help solve this problem.  It forces a check of
all of the stored correction bits within a certain minimum
time interval.  The scrubbing eliminates the stale storage
locations, but it also imposes a performance penalty because
the scrubber contends with normal application software for
access to memory.

Keeping with the idea of testing COTS hardware in the
space environment, the IDT-3081 board does not provide
hardware ECC protection for its SRAM.  We decided to
implement a cyclic ECC code with a software encoder and
decoder.  This code provides single bit error detection and
correction.  It may also detect errors of two or more bits but
then cannot provide corrections.  The ECC software is
implemented as a high priority VxWorks task running every
5 seconds.  When ready, the ECC task preempts any
running test applications and performs a scrub of the OS
code segment. SEUs in the code segment are corrected, and
a telemetry report is generated giving byte address, bit
number, GPS timestamp, and the ARGOS space vehicle
location. The ECC task also contains a general-purpose
interface that allows test applications to register a code or
constant data segment for protection. In these cases, the
ECC task is configured either to scrub these segments
periodically (along with the OS code segment) or to perform
a correction check on demand. 

IDT-3081 Fault Tolerant Applications

Although the memory test and ECC applications provide
good tools to measure overall hardware performance, it is
envisioned that a general purpose, space-based computer
would run applications that use more conventional
algorithms.  One objective for space-based fault-tolerant
computing is that the error detection and correction
mechanisms should be transparent to the implementation of
the algorithm.  For instance, it should be possible to write
an application to analyze instrument data without the
programmer being burdened with knowledge of the
complete details of the various error detection and correction



methods.  Many of the transparent methods available
involve duplicating a software calculation multiple times. 
When not all of the results agree, a transient error occurred
in one of the calculations. Duplication can be done at task-
level by the programmer or by the OS.  Three copies of a
task all perform computations on a data set, and the results
are not accepted unless two out of the three tasks agree.  It
can also be done at instruction level during program
compilation.  We have developed a technique called error
detection by duplicated instructions (EDDI) that uses the
latter approach. Figure 2 below shows a sequence of
instructions (a) and how it is transformed for EDDI (b). 
Computation results from master and shadow instructions
are compared before writing to memory. If the two values
do not match, the program jumps to an error handler that
will cause the program to restart.  Details of this technique
can be found in [11].

(a)

(b)

ADD R3, R1, R2 ; R3 <- R1 + R2
MUL R4, R3, R5 ; R4 <- R3 * R5
ST  0(SP), R4 ; store R4

ADD R3, R1, R2 ;master instruction
ADD R23, R21, R22 ;shadow instruction
MUL R4, R3, R5 ;master instruction
MUL R24, R23, R25 ;shadow instruction
BNE R4, R24, Err ;compare results
ST  0(SP), R4 ;master result
ST  offset(SP), R24 ;shadow result

Figure 2 - EDDI Example

The EDDI method can detect some of the control-flow
errors.  To further enhance the detection coverage for this
type of error, we have developed a technique called control-
flow checking by software signatures (CFCSS).  Signature
monitoring is a well-known method for control-flow
checking.  In this method, a signature is associated with
each program block.  This signature is stored in memory
and checked during the execution of the program.  CFCSS
is an assigned signature method where unique signatures are
associated with each block during compilation time.  These
signatures are embedded into the program using the
immediate field of instructions that use constant operands. 
A run-time signature is generated and compared with the
embedded signatures when instructions are executed.  Figure
3 below shows an example of instructions (a) and how it is
transformed with CFCSS (b).  In this example, R30 (any of
the general-purpose registers of the processor can be used for
this purpose) holds the run-time signature and is updated as
execution moves from block to block.  Upon entering a
block, R30 is XOR’d with a constant to generate the
signature of the current block.  This value will be correct
only if the correct sequence of blocks has been followed. 
The assigned signature of the current block is compared
with the run-time value.  If the two values do not match,
the program jumps to an error handler that will cause the
program to restart.  Details of this technique can be found in
[12].

(a)

(b)

ADD R3, R1, R2  ;A branchless block
MUL R4, R3, R5  ;  of instructions
ST  0(SP), R4  ;

XOR R30, R30, 0x3c  ;Gen. run-time signature
LDI R10, 0xb7       ;Load assigned signature
BNE R30, R10, Err   ;Compare the two
ADD R3, R1, R2   ;Continue normal
MUL R4, R3, R5   ;  sequence if
ST  0(SP), R4   ;  correct signature

Figure 3 - CFCSS Example

Both of these techniques are transparent to the original
software algorithm since they are not implemented until
compile time.  The schematic below shows the system we
used for the ARGOS experiment, Figure 4.

Figure 4 - EDDI and CFCSS Code Generation

Sorting and FFT Algorithms

In order to provide a realistic evaluation of these types of
applications, a small set of algorithm tests was written. 
The two algorithms selected for test are sorting and the Fast
Fourier Transform (FFT).  Normally, these tests would be
run on input data from a space-based instrument.  In order
to maintain the simplicity of the experiments, however, the
test applications simply use built-in tables of sample data. 
This method also has the advantage that the results of the
algorithms are well known in advance, so it is easy to
determine if the applications are in fact running correctly. 
Three test applications were developed using the EDDI and
CFCSS techniques: an insert sort test, a quick sort test, and
a FFT test.  The original versions of these applications
produced hardly any error reports.  Since by this time, we
had already concluded that the SRAM memory was the
primary source of errors, the memory cross section that
these applications occupied was increased dramatically. 
This was done in two complementary ways.  The insert sort
and FFT applications had the input data buffers duplicated
multiple times, with the applications periodically switching
to a new test data set.  This is known as the data expansion
technique.  The quick sort application had the instruction
code segment duplicated multiple times, with the
application periodically switching to a new set of
instructions. This is known as the code expansion
technique. Once these expansion techniques were employed,
the error reports from the applications increased
dramatically.



The insert sort, quick sort, and FFT test applications all use
the EDDI and CFCSS methods to detect errors within their
own code and data memory segments.  These two methods
can also detect errors that occurred within the IDT-3081
processor itself.  An EDDI or CFCSS error causes the
monitor task to restart the errant test application. If the error
was caused by an error in the processor or in the memory
data segment, this first restart is successful. If the test
application produces another error immediately on first
restart, it is most probably due to an error in the memory
code segment. In this case, a request is sent to the software
ECC to check for errors in the code segment, and a second
restart is attempted. In case the second restart fails, the task
is considered unrecoverable and is dropped from the list of
active test applications (the test application is suspended). 
Since the memory where the OS and applications run is not
completely reliable, it is very difficult to isolate the exact
cause of the error.  One can always make the case that an
apparent processor error was in fact a memory error that
occurred in an unprotected region.  A first analysis of test
application errors is to examine number of errors detected
versus the amount of memory used.  If the error rate is
comparable to memory test error rates we tentatively
conclude that the errors are being produced in memory.

There are also several pieces of support code loaded along
with the test applications.  A software monitor provides
watchdog services for the test applications.  When a test
application times out, the monitor task will attempt to
restart the errant program from the beginning.  An
application is given two retries before it is considered
unsalvageable and removed from the list of active programs.
Also, an error log module is loaded.  It collects reports from
the test applications and software monitor, arranges them
into a common format, and passes them to telemetry.

5.  RAD -HARD BOARD RESULTS

One great surprise of the mission is that even though the
RH3000 board uses radiation-hardened technology, the test
applications show a small non-vanishing number of errors
occurring over time, Figure 5. From day 1999/357 to day
2001/243, the memory test collected 7 errors over 543 days
of actual run time.  The test buffer was 512 Kbytes. This
results in an error rate of 3.1 x 10-9 errors/bit-day. While
this low rate reflects the memory technology in use, it is
higher than the < 1 x 10-10 rate expected for the board [13].
This is because the memory controller on the RH3000 board
contains an ECC encoder/decoder pair, which should be able
to automatically detect and correct single bit errors before
the software memory test is able to see them. The ECC
hardware has never generated a memory error report. Either
the memory hardware ECC is not configured or functioning
properly, or errors are occurring at a place somewhere other
than the memory or processor (the memory bus buffer chips
are a good candidate). It is interesting to note that all
memory test errors collected from the RH3000 board
involve bit flips from a 1  to a 0 . Also, all of the errors
are located in only two bits out of the four bits set to 1  in
each eight bit test word.

The sine table test application also exhibits errors on the

RH3000 board.  From day 2000/130 to day 2001/243, the
sine test application collected 18 errors over 444 days of
actual run time.  Since the test buffer was 512 Kbytes, this
results in an error rate of 9.7 x 10-9 error / bit-day if only the
effects of the memory exposure are considered.  This error
rate is more than three times higher than the memory test
produces on the RH3000 board and is two orders of
magnitude higher than expected.  It is unclear whether
additional errors from components other than the memory
lead to the higher error rate. The geographic locations of
these errors correlates well with high particle regions such as
the SAA and the radiation belts.

The RH3000 also sustained one autonomous reboot. This
occurred in the northern radiation belt. this action is
commensurate with the expected response of the RH3000
hardware to a miscompare between the two processors.

Figure 5 - RH3000 SEU’s (green star) and reboot (red
diamond) locations

Figure 6 - Summary of all IDT-3081 SEU’s

6.  COTS BOARD RESULTS

During the same time period the various IDT-3081 tests



produced a total of more than 2000 SEU’s detected and
more than 50 task exceptions and reboots. These results,
presented in Figures 6 and 7, also show strong correlation
with regions of high particle background.

Figure 7 - Summary of all IDT-3081 task exceptions (blue
crosses) and reboots (diamonds).

Memory Test Results

The IDT-3081 fixed-pattern, simple memory test collected
113 errors from 1999/244 to 1999/345 in 84 days of actual
run time.  The test buffer was 256 Kbytes, divided into a
128 Kbyte cached buffer and a 128 Kbyte non-cached buffer.
 The overall error rate is 6.4 x 10-7 errors/bit-day.  Of the
errors that occurred, 54 were located in the cached region,
and 59 were located in the non-cached region, showing little
effect of utilizing the IDT-3081 data cache.  One should
note, however, that the memory test continually reloads and
flushes the data cache, so this result may not apply to more
general purpose software applications.  For both cached and
uncached tests  bit flips from ’1’ to ’0’ are favored over
SEUs from  ’0’ to ’1’, Table 1.

Table 1- IDT-3081 Memory Test SEU Distribution

Errors
1->0

Errors
0->1

Ratio
1->0/0->1

Cached 36 18 2.0±0.5
Non-cached 32 27 1.2±0.3

The second memory test was written to further investigate
the dependency of error rates on the particular bit pattern
stored in memory.  The IDT-3081 advanced memory test
uses a 256 Kbyte test buffer and always accesses the buffer
through the data cache.  From 2000/146 to 2001/231, this
memory test collected 290 errors in 228 days of actual run
time. The resulting error rate is 6.1 x 10-7 error/bit-day,
which is very close the error rate produced by the simple
memory test. This second memory test shows noticeable
dependencies of the error rate on the particular bit patterns
used in the test buffer. Each test pattern is a repetition of
one of the following 16-bit test words: 0000 hex, FFFF
hex, 00FF hex, FF00 hex, AAAA hex, AA55 hex, or 5555
hex. Each test pattern shows a different error rate, and each

test pattern exhibits a different ratio of errors involving bit
flips from ’1’ to ’0’ verses from ’1’ to ’0’.  The ratios for
those patterns involving alternating bit patterns are shown
below.

Table 2 - Advanced Memory Test SEU Distribution

Test Pattern Ratio 1 -> 0 / 0 -> 1
00FF 1.8±0.6
FF00 1.4±0.5

AAAA 0.9±0.4
AA55 1.3±0.4
5555 1.7±0.5

The differences in error rates between different patterns may
be attributable to the details of the mechanical and electrical
design of the memory chips [5].

Fault Tolerant Applications Results

The ECC task periodically scrubs the OS code segment, the
monitor and error log code segments, the advanced memory
test code segment, and the sort and FFT test application
code segments, approximately 400 Kbytes of memory that
is monitored for errors.  From day 2000/131 to day
2001/233, the ECC task collected 590 errors in 287 days of
run time.  The resulting memory error rate is 6.3 x 10-7

error/bit-day. This is in very close agreement with the
memory tests although the error detection method is quite
different.

The error data for the fault tolerant applications is
summarized in Table 3. The three applications all utilize the
same techniques, but are configured to give a small
application with a large memory buffer, a large application
size with a small data buffer, and extensive use of the IDT-
3081 floating point unit.

The insert sort test application has a 4 Kbyte code segment
and a 160 Kbyte data segment after data expansion.  The
insert sort test collected 145 EDDI errors from day
2000/135 to day 2001/226 during 203 days of actual run
time. This results in a memory error rate of 5.4 x 10-7 for
the insert sort test application. The lack of other errors types
is in consistent with the small code size of the application.

Table 3 - Fault Tolerant Application SEU Summary

Error Type Insert
Sort

Quick
Sort

FFT

EDDI 145 30 79
CFCSS 0 8 1
Timeout 0 7 1
Assertion 0 3 0
Processor
Exception

0 10 1

Total 145 58 82
 

The FFT test application has a 6 KB code segment and a 80



Kbyte data segment, with data expansion.  The FFT test
collected the following errors from day 2000/131 to day
2001/210 during 216 days of actual run time. This results
in a memory error rate of 5.4 x 10-7 for the FFT test
application.

The quick sort test application has a 75 Kbyte code
segment, with code expansion and a 8 Kbte data segment. 
The quick sort test operated from day 2000/131 to day
2001/227 resulting in 220 days of actual run time. The
resulting total error rate for the quick sort test application is
3.9 x 10-7. The large code size of the quick sort provided
more opportunity for SEUs that were not detected by the
ECC code and resulted in processor errors. These SEUs
could have occurred in the application code between passes
of the ECC task or in the data segments related to the
application.

All of these test applications report error rates that are
actually below the error rate for the memory test. The quick
sort test application shows the most variety in error types
reported.  This is most likely due to the expanded code size
of this application.  The quick sort test application also
produced three assertion errors.  These occur when the
application has finished sorting its test data set, but the
results are not in fact sorted correctly even though no other
type of error was seen.  The insert sort and FFT application
errors are almost all EDDI errors.  This may result from the
large data buffers employed by these tests.  The insert sort
application uses a data buffer which is twice the size of the
buffer the FFT application uses, and the insert sort
application produced about twice as many EDDI errors
during approximately the same amount of run time. 

The FFT application did report one error due to a data cache
upset.  The test applications always check the contents of
their test data sets whenever an EDDI error is encountered. 
This check is done a second time with bypassing the data
cache when a data error occurs.  If the second check which
bypasses the cache shows no sign of the error, then the error
must have occurred in the data cache.  The IDT-3081 data
cache hardware parity, however, did not report an error at the
time the FFT reported a software data cache error.  This
missing hardware error report is a mystery.

During the application run time shown in Table 3, the IDT-
3081 board also automatically rebooted itself six times. 
Two of these reboot instances are known to be VxWorks OS
critical exceptions.  When the OS encounters an exception
inside an interrupt handler, inside an exception handler, or
inside the core of the kernel scheduler, it will reboot the
processor to prevent an infinite recursion of exceptions.  The
causes of the other four automatic reboots are unknown. 

All of the EDDI and CFCSS errors reported in Table 3 are
considered successful corrections of SEUs. In all of these
cases, the test application was shutdown and restarted
without any adverse effects on the rest of the system. The
other errors shown in Table 3, while successfully detected,
might not be considered successful corrections.  For the
assertions, the test application produced incorrect results.
The timeouts and task exceptions usually resulted in the test

application being suspended from execution. And
obviously, the automatic reboots result in the stoppage of
all of the test applications.  When the six automatic reboots
are added in to the figures from Table 3, the successful SEU
correction rate is about 90%. The individual algorithms
better suited to the software error detection and correction
techniques had error correction rates in excess of 99%.

SEU Orbital Effects

The SEU pattern exhibited by the COTS board generally
follows the distribution expected from the combination of
the SAA and the radiation belts, but also shows an excess
of SEUs after the vehicle has departed the SAA. This is
evidenced by the asymmetry between the number of SEUs
observed when the vehicle is on a north bound track as
opposed to a south bound track. This effect could be caused
by activation of material in the instrument by charged
particles in the SAA, or by geomagnetic effects.

Table 4 - SEU data vs orbital direction near the SAA

Latitude range SEUs
north bound

SEUs
south bound

40° N - 60° N 3 2
6° N - 40° N 15 1
0° - 6° N 17 3
0° - 5° S 11 13
25° S - 27° S 34 40
30° S - 40° S 60 107

Table 4 presents SEU data for the year 2000 for longitudes
between 0° and 90° west. Each band of latitude shown has
the full year of SEU data. Bands not enumerated have not
yet been analyzed, this is the region from 5°S to 25°S in
the core of the SAA. To the north of the SAA there is a
clear excess  of SEUs for north going tracks until the
northern radiation belt is reached. To the south of the SAA
there is also a statistically significant excess on south bound
orbits, but the difference is not as large because of the
proximity of the southern radiation belt. This asymmetry
has at least two potential causes, the first is activation of the
material in the vicinity of the processor card or on the
processor card, and the second is a directional flux of
particles from the SAA to the USA instrument. SEUs from
activation could be produced by the decay of isotopes with
half lives of several seconds to minutes. These isotopes
could be produced by interactions of charged particles with
either aluminum or the silicon, copper, magnesium or
chromium used in the 6061 alloy [14], or other materials in
close proximity to the board. More work is planned on
correlation of error rates with known particle fluxes.

7.  CONCLUSIONS

The performance of the IDT-3081 demonstrates that it is
possible to increase the reliability of a COTS system
operating in the space environment. This is illustrated by
the improvement in the reliability provided by the ECC
routines. The error detection and correction software



techniques are not able to correct all errors on the IDT-3081
board, resulting in more crashes than the RH-3000 board
experienced. The RH-3000, although it performed well for a
first unit, was also hampered by this. One of the goals of
the project was to use the boards to process X-ray data in
flight. Because of the speed limitations imposed on the RH-
3000 by the declocking and the inability to use the cache
memory it was not able to process data fast enough to keep
up with the sensor output. A second generation of the RH-
3000 chip set has since been produced and our information
is that the deficiencies that limited its use on ARGOS have
been corrected.

In general, there are four classes of uncorrected errors:
assertions, timeouts, exceptions, and reboots.  Assertions
occur when a test application completes its task and reports
no internal errors, but produces incorrect results. This class
of errors is fairly benign.  Although the results are incorrect,
the application continues to run, and more importantly, the
rest of the system continues to run.  Timeouts occur when a
test application does not report completion of its task
within a reasonable amount of time.  Again, this class of
critical error is not necessarily catastrophic.  Usually, the
rest of the system continues to run normally, but any results
that the test application may have been working on are lost.
Exceptions are those undetected errors causing the processor
to encounter a potentially illegal hardware operation. 
Examples of exceptions are illegal processor instruction
opcodes, unaligned addresses, and out-of-bounds addresses.
The fourth class of uncorrected error is the automatic reboot.
 These occur when the processor is running applications and
no apparent error is reported, but suddenly the processor
reboots itself.  Obviously, the reboots are severe since they
halt the currently running application set and cause all of the
results to be lost.

The total system availability of the IDT-3018 board can best
be expressed by specifying the average time the board was
capable of running before it required a restart. This was
about twelve days when the board was operating with the
three test applications plus the ECC, a significant
improvement from the two or three days that it would run at
the start of the experiment. The restarts were due to either a
system crash or the accumulation of sufficient system
exceptions to require a reboot. One of the drawbacks to
using a proprietary operating system such as VxWorks is
that it is difficult or impossible to add capability to clean
up after system exceptions, and often the only recourse is to
restart.

The RAD-hard board was the more reliable of the two, but
it would not have been able to do the data processing job
intended for it. The COTS board had more failures, but
many of these failures were detected by the fault tolerance
software while most of the system was still functioning,
and could potentially be ameliorated by more sophisticated
techniques. The ARGOS Testbed demonstrates that fault
detection software works and points the direction of future
investigation to more robust system recovery techniques.

8.  ACKNOWLEDGEMENTS

The authors wish to thank Mr. Andrew Fox for supplying
the RH-3000 board and Dr. Alan Ross and Mr. Kenneth
Clark for supplying the IDT-3081 board. The authors also
wish to thank Mr. Louis Lome and Dr. Richard Bleach for
their sustained encouragement of the program from its
inception and for many constructive suggestions.

9.  REFERENCES

[1] Ziegler, J. F., et al., IBM J.Res. Devlop., Vol. 40, No.
1, (all articles), Jan. 1996.

[2] LaBel, K.A., et al., Commercial Microelectronics
Technologies for Applications in the Satellite Radiation
Environment,  IEEE Aerospace Applications Conf., Vol. 1,
pp. 375-390, 1996.

[3] Shirvani, P. and et. al., "Software-Implemented Hardware
Fault Tolerance Experiments; COTS in Space," International
Conference on Dependable Systems and Networks, Fast
Abstracts, pp. B56-7, June 25-28, 2000.

[4] Nahmsuk Oh, "Software Implemented Hardware Fault
Tolerance," Ph.D. thesis, Stanford University, Dec. 2000.

[5] Shirvani, P.P., "Fault-Tolerant Computing for
Radiation Environments," CRC-TR 01-6 (Ph.D. Thesis),
Stanford University, Stanford, CA, June, 2001.

[6] The USA X-ray Timing Experiment, P. S. Ray, K.S.
Wood, G. Fritz, P. Hertz, M. Kowalski, W.N. Johnson,
M.N. Lovellette, M.T. Wolff, D. Yentis, R. M.
Bandyopadhyay, E.D. Bloom, B. Giebels, G.Godfrey, K.
Reilly, P. Saz Parkinson, G. Shabad, P. Michelson, M.
Roberts, D.A. Leahy, L. Cominsky, J. Scargle, J. Beall, D.
Chakrabarty, Y. Kim, Proceedings of X-ray Astronomy
1999, Bologna, Italy

[7] ICD-907A P91-1/Unconventional Stellar Aspect (USA)
Interface Control Document, Rockwell Aerospace, 1996.

[8] Dale, C.J., et al., “Fiber Optic Data Bus Space
Experiment on Board the Microelectronics and Photonics
Test Bed (MPTB),” Proc. of the SPIE – The Intr’l Society
for Optical Eng., Vol. 2482, pp. 285-293, April 1995.

[9] Regeon, P., Lynn, P., Johnson, M., and Chapman,J.,
"The Clementine Lunar Orbiter," 20th International
Symposium on Space Technology and Science, May 19-25,
1996.

[10] Shirvani, P.P., N. Saxena and E.J. McCluskey,
"Software-Implemented EDAC Protection Against SEUs,"
IEEE Transactions on Reliability, Special Section on Fault-
Tolerant VLSI Systems, Vol. 49, No. 3, pp. 273-284, Sep.
2000.

[11] Oh, N., P.P. Shirvani and E.J. McCluskey, "Error
Detection by Duplicated Instructions In Super-scalar



Processors," to appear in IEEE Transactions on Reliability
Sep. 2001.

[12] Oh, N., P.P. Shirvani and E.J. McCluskey, "Control
Flow Checking by Software Signatures," to appear in IEEE
Transactions on Reliability Sep. 2001.

[13] Harris private communication

[14] Erik Oberg, Franklin D. jones, Holbrook L. Horton,
and Henry H. Ryffell, 26th Edition Machinery’s Handbook,
New York: Industrial Press, 2000.

Author Biography: Dr. Lovellette is the Project Scientist for
the NRL-801 experiment on ARGOS and served as the
principal experiment spokesperson for all NRL experiments
during ARGOS systems test at Boeing. He is currently
involved with GLAST on-board processing and integration
and test.


